36 research outputs found

    Eco-evolutionary dynamics of social dilemmas

    Full text link
    Social dilemmas are an integral part of social interactions. Cooperative actions, ranging from secreting extra-cellular products in microbial populations to donating blood in humans, are costly to the actor and hence create an incentive to shirk and avoid the costs. Nevertheless, cooperation is ubiquitous in nature. Both costs and benefits often depend non-linearly on the number and types of individuals involved -- as captured by idioms such as `too many cooks spoil the broth' where additional contributions are discounted, or `two heads are better than one' where cooperators synergistically enhance the group benefit. Interaction group sizes may depend on the size of the population and hence on ecological processes. This results in feedback mechanisms between ecological and evolutionary processes, which jointly affect and determine the evolutionary trajectory. Only recently combined eco-evolutionary processes became experimentally tractable in microbial social dilemmas. Here we analyse the evolutionary dynamics of non-linear social dilemmas in settings where the population fluctuates in size and the environment changes over time. In particular, cooperation is often supported and maintained at high densities through ecological fluctuations. Moreover, we find that the combination of the two processes routinely reveals highly complex dynamics, which suggests common occurrence in nature.Comment: 26 pages, 11 figure

    Evolutionary Multiplayer Games

    Full text link
    Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\ increase less than linear with the number of cooperators. Such multiplayer games can be introduced in all the fields where evolutionary game theory is already well established. However, the inclusion of non-linearities can help to advance the analysis of systems which are known to be complex, e.g. in the case of non-Mendelian inheritance. We review the diachronic theory and applications of multiplayer evolutionary games and present the current state of the field. Our aim is a summary of the theoretical results from well-mixed populations in infinite as well as finite populations. We also discuss examples from three fields where the theory has been successfully applied, ecology, social sciences and population genetics. In closing, we probe certain future directions which can be explored using the complexity of multiplayer games while preserving the promise of simplicity of evolutionary games.Comment: 14 pages, 2 figures, review pape

    Repeatability of evolution on epistatic landscapes

    Full text link
    Evolution is a dynamic process. The two classical forces of evolution are mutation and selection. Assuming small mutation rates, evolution can be predicted based solely on the fitness differences between phenotypes. Predicting an evolutionary process under varying mutation rates as well as varying fitness is still an open question. Experimental procedures, however, do include these complexities along with fluctuating population sizes and stochastic events such as extinctions. We investigate the mutational path probabilities of systems having epistatic effects on both fitness and mutation rates using a theoretical and computational framework. In contrast to previous models, we do not limit ourselves to the typical strong selection, weak mutation (SSWM)-regime or to fixed population sizes. Rather we allow epistatic interactions to also affect mutation rates. This can lead to qualitatively non-trivial dynamics. Pathways, that are negligible in the SSWM-regime, can overcome fitness valleys and become accessible. This finding has the potential to extend the traditional predictions based on the SSWM foundation and bring us closer to what is observed in experimental systems

    Mutualism and evolutionary multiplayer games: revisiting the Red King

    Full text link
    Coevolution of two species is typically thought to favour the evolution of faster evolutionary rates helping a species keep ahead in the Red Queen race, where `it takes all the running you can do to stay where you are'. In contrast, if species are in a mutualistic relationship, it was proposed that the Red King effect may act, where it can be beneficial to evolve slower than the mutualistic species. The Red King hypothesis proposes that the species which evolves slower can gain a larger share of the benefits. However, the interactions between the two species may involve multiple individuals. To analyse such a situation, we resort to evolutionary multiplayer games. Even in situations where evolving slower is beneficial in a two-player setting, faster evolution may be favoured in a multiplayer setting. The underlying features of multiplayer games can be crucial for the distribution of benefits. They also suggest a link between the evolution of the rate of evolution and group size

    Chaotic provinces in the kingdom of the Red Queen

    Full text link
    The interplay between parasites and their hosts is found in all kinds of species and plays an important role in understanding the principles of evolution and coevolution. Usually, the different genotypes of hosts and parasites oscillate in their abundances. The well-established theory of oscillatory Red Queen dynamics proposes an ongoing change in frequencies of the different types within each species. So far, it is unclear in which way Red Queen dynamics persists with more than two types of hosts and parasites. In our analysis, an arbitrary number of types within two species are examined in a deterministic framework with constant or changing population size. This general framework allows for analytical solutions for internal fixed points and their stability. For more than two species, apparently chaotic dynamics has been reported. Here we show that even for two species, once more than two types are considered per species, irregular dynamics in their frequencies can be observed in the long run. The nature of the dynamics depends strongly on the initial configuration of the system; the usual regular Red Queen oscillations are only observed in some parts of the parameter region

    The pace of evolution across fitness valleys

    Full text link
    How fast does a population evolve from one fitness peak to another? We study the dynamics of evolving, asexually reproducing populations in which a certain number of mutations jointly confer a fitness advantage. We consider the time until a population has evolved from one fitness peak to another one with a higher fitness. The order of mutations can either be fixed or random. If the order of mutations is fixed, then the population follows a metaphorical ridge, a single path. If the order of mutations is arbitrary, then there are many ways to evolve to the higher fitness state. We address the time required for fixation in such scenarios and study how it is affected by the order of mutations, the population size, the fitness values and the mutation rate

    Ecological Drivers of Community Cohesion

    Get PDF
    From protocellular to societal, networks of living systems are complex and multiscale. Discerning the factors that facilitate assembly of these intricate interdependencies using pairwise interactions can be nearly impossible. To facilitate a greater understanding, we developed a mathematical and computational model based on a synthetic four-strain Saccharomyces cerevisiae interdependent system. Specifically, we aimed to provide a greater understanding of how ecological factors influence community dynamics. By leveraging transiently structured ecologies, we were able to drive community cohesion. We show how ecological interventions could reverse or slow the extinction rate of a cohesive community. An interconnected system first needs to persist long enough to be a subject of natural selection. Our emulation of Darwin’s “warm little ponds” with an ecology governed by transient compartmentalization provided the necessary persistence. Our results reveal utility across scales of organization, stressing the importance of cyclic processes in major evolutionary transitions, engineering of synthetic microbial consortia, and conservation biology.journal articl

    Synthetic Symbiosis under Environmental Disturbances

    Get PDF
    By virtue of complex ecologies, the behavior of mutualisms is challenging to study and nearly impossible to predict. However, laboratory engineered mutualistic systems facilitate a better understanding of their bare essentials. On the basis of an abstract theoretical model and a modifiable experimental yeast system, we explore the environmental limits of self-organized cooperation based on the production and use of specific metabolites. We develop and test the assumptions and stability of the theoretical model by leveraging the simplicity of an artificial yeast system as a simple model of mutualism. We examine how one-off, recurring, and permanent changes to an ecological niche affect a cooperative interaction and change the population composition of an engineered mutualistic system. Moreover, we explore how the cellular burden of cooperating influences the stability of mutualism and how environmental changes shape this stability. Our results highlight the fragility of mutualisms and suggest interventions, including those that rely on the use of synthetic biology.IMPORTANCE The power of synthetic biology is immense. Will it, however, be able to withstand the environmental pressures once released in the wild. As new technologies aim to do precisely the same, we use a much simpler model to test mathematically the effect of a changing environment on a synthetic biological system. We assume that the system is successful if it maintains proportions close to what we observe in the laboratory. Extreme deviations from the expected equilibrium are possible as the environment changes. Our study provides the conditions and the designer specifications which may need to be incorporated in the synthetic systems if we want such "ecoblocs" to survive in the wild

    Consequences of combining sex‐specific traits

    Get PDF
    Males and females follow distinct life-history strategies that have co-evolved with several sex-specific traits. Higher investment into parental investment (PI) demands an increased lifespan. Thus, resource allocation toward an efficient immune system is mandatory. In contrast, resources allocated toward secondary sexual signals (ornamentation) may negatively correlate with investment into immunity and ultimately result in a shorter lifespan. Previous studies have addressed how resource allocation toward single sex-specific traits impacts lifetime reproductive success (LRS). However, the trade-offs between diverse sex-specific characteristics and their impact on LRS remain largely unassessed impeding our understanding of life-history evolution. We have designed a theoretical framework (informed by experimental data and evolutionary genetics) that explores the effects of multiple sex-specific traits and assessed how they influence LRS. From the individual sex-specific traits, we inferred the consequences at the population level by evaluating adult sex ratios (ASR). Our theory implies that sex-specific resource allocation toward the assessed traits resulted in a biased ASR. Our model focuses on the impact of PI, ornamentation, and immunity as causal to biased ASR. The framework developed herein can be employed to understand the combined impact of diverse sex-specific traits on the LRS and the eventual population dynamics of particular model systems

    The business and pleasure of teeth: Dental tourism

    Get PDF
    In-vogue 21st century, the popular term globalization has definitely conjured a plethora of development, the economic surge, integrated corporate dental offices, and contemporary approaches to health-seeking behavior. Transnational medical travel, a heterogeneous phenomenon has gained attention recently as a strategy for patients to procure cost effective care of superior quality relative to that provided within their home countries. Dental tourism, a subset of medical tourism, involves individuals seeking dental care outside their local healthcare systems, coupled with a vacation. India, a country of continental proportions, has become a popular destination for foreign patients in recent times, particularly in dental care. India’s accessibility and availability of quality assured and cost-effective dental treatment, amalgamated with its myriad hues of culture and heritage, has exponentially fostered the bloom of India in “dental tourism.” Steep costs, lack of health insurance and dental benefits are key factors pushing low-income western world families to obtain cross-country dental care. Dental Tourism companies and corporate dental chains are increasingly advertising “all inclusive” travel packages that include dental procedures, hotel room reservations, side trips to tourist attractions, and airline tickets to lure international clients. The objective of this scientific communication was to explore and address the social, ethical, economic, and legal dimensions of dental tourism in India. With current governmental activities in full throttle, the tide of dental tourism definitely envisages to boost the economy of the Indian Republic manifold. The future is not near. It’s here
    corecore